

ULTRASOUND GUIDED CENTRAL CATHETERS (CICCS AND FICCS) IN NEONATES

GIOVANNI BARONE

INFERMI HOSPITAL RIMINI

Ultrasound guided central catheters (CICCs and FICCs) in neonates

- I have no conflict of interest in relation to this presentation

ULTRASOUND GUIDED CENTRAL CATHETERS (CICCS AND FICCS) IN NEONATES

- Many studies (mostly European), with a lot of variability
 - Type of catheter (silicon vs. polyurethane vs. power injectable polyurethane)
 - Aseptic technique (type of antiseptic; MBP vs. no MBP; etc.)
 - Site of venipuncture (brachiocephalic vs. internal jugular vs. subclavian etc.)
 - Tip location (IC-ECG vs. ECHOTIP vs. X-ray)
 - Choice of the exit site (tunnel vs. no tunnel)
 - Securement (sutures vs. sutureless device vs. subcutaneous anchorage)
 - Protection of the exit site (glue vs. no glue)

Supraclavicular Approach to Ultrasound-Guided Brachiocephalic Vein Cannulation in Children and Neonates

Zied Merchaoui^{1†}, Ulrik Lausten-Thomsen^{1,2†}, Florence Pierre¹, Maher Ben Laiba¹, Nolwenn Le Saché¹ and Pierre Tissieres^{1,2*}

¹Pediatric and Neonatal Intensive Care Unit, Paris South University Hospitals, Le Kremlin-Bicêtre, Assistance Publique Hôpitaux de Paris, Paris, France, ²Institute of Integrative Biology of the Cell, CNRS, CEA, University of Paris Sud, Paris Saclay University, Gif-sur-Yvette, France

Supraclavicular Ultrasound-Guided Catheterization of the Subclavian Vein in Pediatric and Neonatal ICUs: A Feasibility Study

Anne-Sophie Guilbert, MD¹; Lorenço Xavier, MD¹; Clément Ammouche, MD¹; Philippe Desprez, MD¹; Dominique Astruc, MD²; Pierre Diemunsch, PhD³; Jocelyne Bientz, MD¹

Pediatr Surg Int (2010) 26:815–818
DOI 10.1007/s00383-010-2616-3

ORIGINAL ARTICLE

Ultrasound-guided percutaneous insertion of 2.7 Fr tunneled Broviac lines in neonates and small infants

G. S. Arul · H. Livingstone · P. Bromley · J. Bennett

Pediatric Anesthesia

Pediatric Anesthesia ISSN 1155-5645

ORIGINAL ARTICLE

Ultrasound-guided supraclavicular cannulation of the brachiocephalic vein in infants: a retrospective analysis a case series

Christian Breschan¹, Manuela Platzer¹, Robert Jost², Haro Stettner³, Georg Feigl⁴ & Rudolf Liki

¹ Department of Anaesthesia, Klinikum Klagenfurt, Klagenfurt, Austria

² Department of Anaesthesia, Krankenhaus Spittal/Drau, Spittal/Drau, Austria

³ Department of Statistics, University of Klagenfurt, Klagenfurt, Austria

⁴ Department of Anatomy, Medical University of Graz, Graz, Austria

Ultrasound-Guided Subclavian Vein Cannulation in Low Birth Weight Neonates

Ulrik Lausten-Thomsen, MD, PhD¹; Zied Merchaoui, MD¹; Cécile Dubois, MD^{1,2}; Sergio Eleni Dit Trolli, MD^{1,3}; Nolwenn Le Saché, MD¹; Mostafa Mokhtari, MD^{1,4}; Pierre Tissières, MD, PhD^{1–3}

CORRESPONDENCE

Retrospective evaluation of 599 brachiocephalic vein cannulations in neonates and preterm infants

Christian Breschan^{1,*}, Gudrun Graf¹, Christoph Arneitz², Haro Stettner³,
Stefan Neuwersch¹, Christian Stadik⁴, Markus Koestenberger¹, Sandra Holasek⁵ and
Rudolf Likar¹

¹Department of Anaesthesia, Klinikum Klagenfurt, Klagenfurt, Austria, ²Department of Pediatric Surgery, Klinikum Klagenfurt, Klagenfurt, Austria, ³Department of Statistics, University of Klagenfurt, Klagenfurt, Austria, ⁴Department of Neurorehabilitation, Krankenhaus Hermagor, Klagenfurt, Austria and ⁵Institute of Pathophysiology, Medical University of Graz, Graz, Austria

*Corresponding author. E-mail: christian.breschan@kabeg.at

BJA 2022

Keywords: brachiocephalic vein; central venous catheter; intravenous cannula; neonates; preterm infants; ultrasound

CORRESPONDENCE

Retrospective evaluation of 599 brachiocephalic vein cannulations in neonates and preterm infants

Christian Breschan^{1,*}, Gudrun Graf¹, Christoph Arneitz², Haro Stettner³, Stefan Neuwersch¹, Christian Stadik⁴, Markus Koestenberger¹, Sandra Holasek⁵ and Rudolf Likar¹

¹Department of Anaesthesia, Klinikum Klagenfurt, Klagenfurt, Austria, ²Department of Pediatric Surgery, Klinikum Klagenfurt, Klagenfurt, Austria, ³Department of Statistics, University of Klagenfurt, Klagenfurt, Austria, ⁴Department of Neurorehabilitation, Krankenhaus Hermagor, Klagenfurt, Austria and ⁵Institute of Pathophysiology, Medical University of Graz, Graz, Austria

*Corresponding author. E-mail: christian.breschan@kabeg.at

Keywords: brachiocephalic vein; central venous catheter; intravenous cannula; neonates; preterm infants; ultrasound

- Success 97.8%
- Arterial puncture 0.5%
- No pneumothorax

(no insertion bundle)

ULTRASOUND GUIDED CENTRAL CATHETERS (CICCS AND FICCS) IN NEONATES TODAY

- A well-defined, standardized *insertion bundle* (SICA-Ped)
 1. Choice of the site of venipuncture by pre-procedural US evaluation (RaCeVA/RaFeVA)
 2. Appropriate asepsis (hand hygiene + 2% CHG in 70% IPA + MBP)
 3. US-guided venipuncture + US control after venipuncture (r/o PNX; tip navigation)
 4. Intra procedural tip location (IC-ECG and/or ECHOTIP)
 5. Tunneling
 6. Securement by subcutaneous anchorage
 7. Protection of the exit site with cyanoacrylate glue and semipermeable transparent membrane

FIRST DESCRIPTION OF THE SICA-PED BUNDLE (10 YEARS AGO)

Current Drug Targets, 2012, 13, 961-969

961

Ultrasound Guided Central Vascular Access in Neonates, Infants and Children

Mauro Pittiruti*

2012

Department of Surgery, Catholic University, Largo Francesco Vito 1, 00168 Roma, Italy

J Vasc Access 2013;14(4):318-319

DOI: 10.5301/jva.5000158

EDITORIAL

Central venous catheters in neonates: old territory, new frontiers

Invited commentary to *Peripherally inserted central venous catheters in critically ill premature neonates*, by Ozkiran et al, J Vasc Access 2013;14(4):320-324

Mauro Pittiruti

Department of Surgery, Catholic University Hospital, Rome - Italy

2013

Vascular Access in Neonates and Children

Daniele G. Biasucci
Nicola Massimo Disma
Mauro Pittiruti
Editors

 Springer

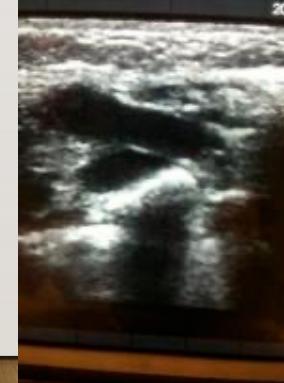
Chapter 12 **Ultrasound Guided Venous Access** **in Neonates**

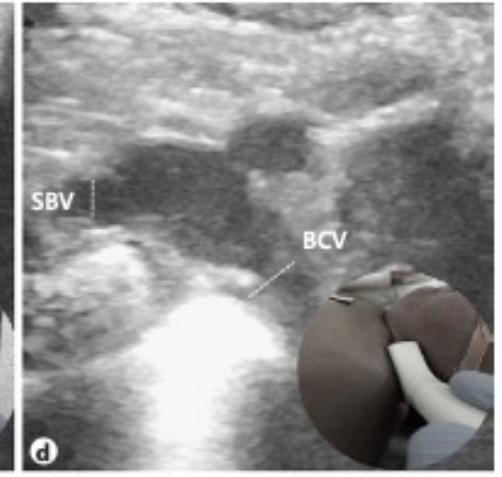
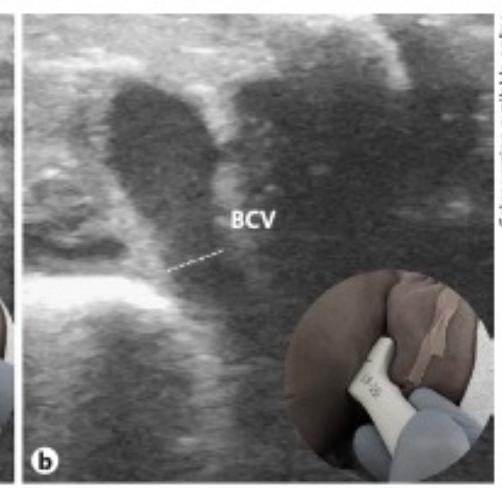
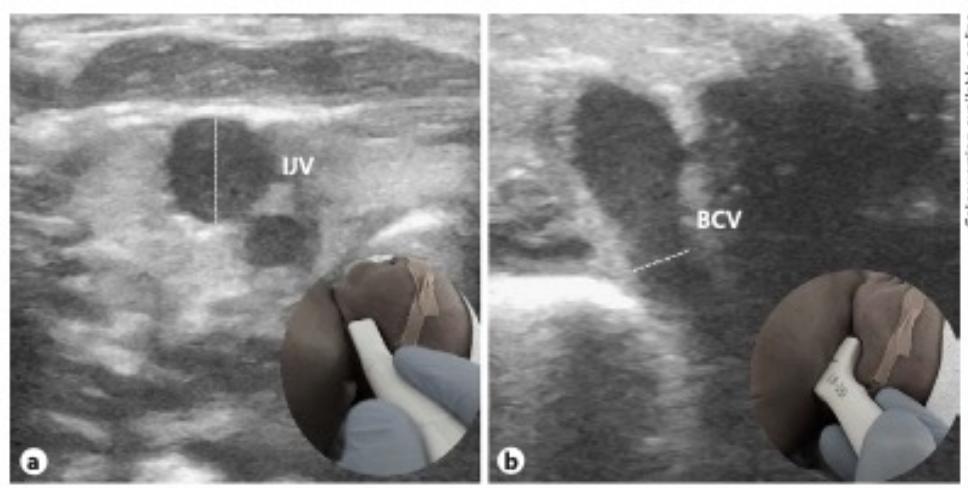
Christian Breschan and Mauro Pittiruti

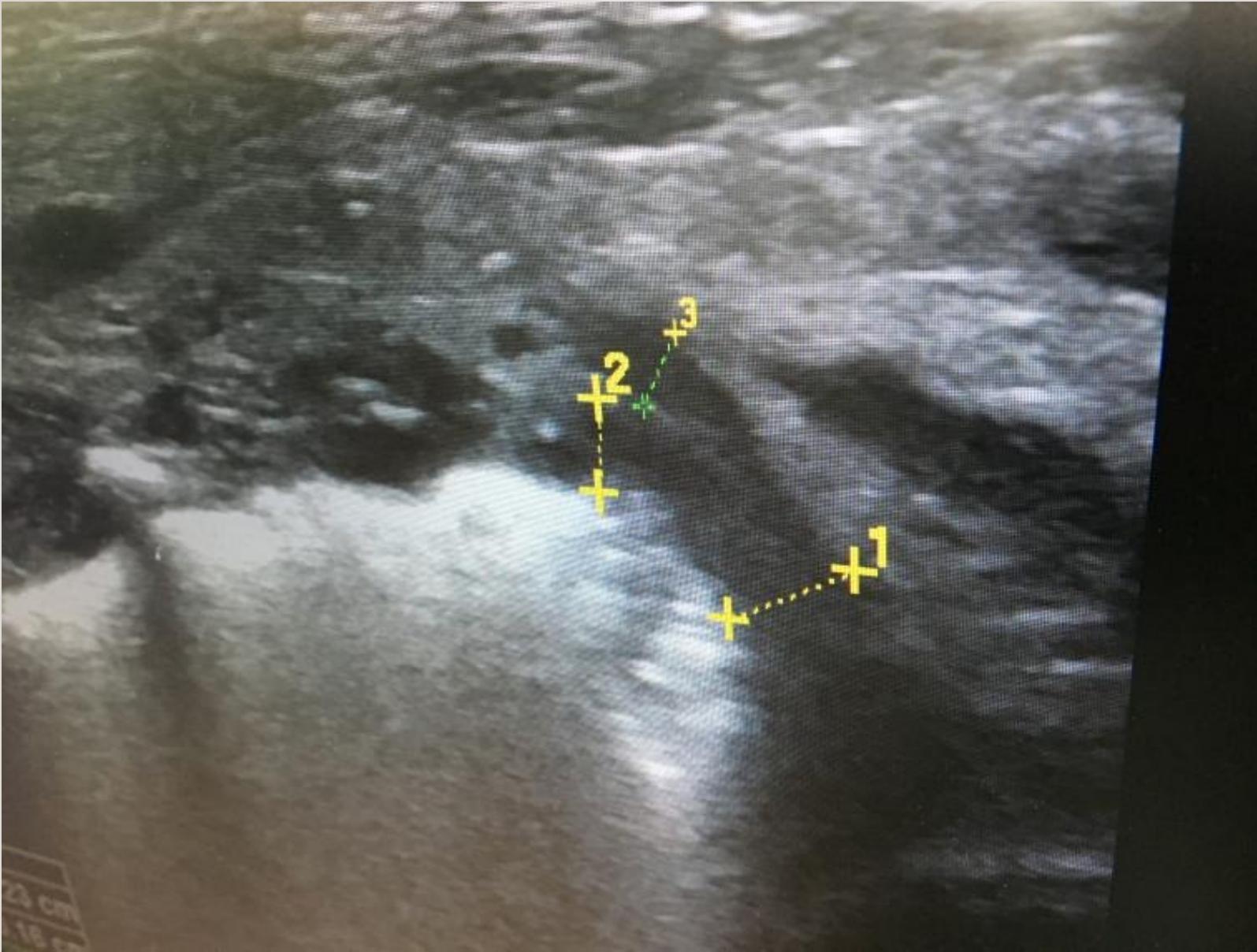
WHY DO WE NEED AN INSERTION BUNDLE?

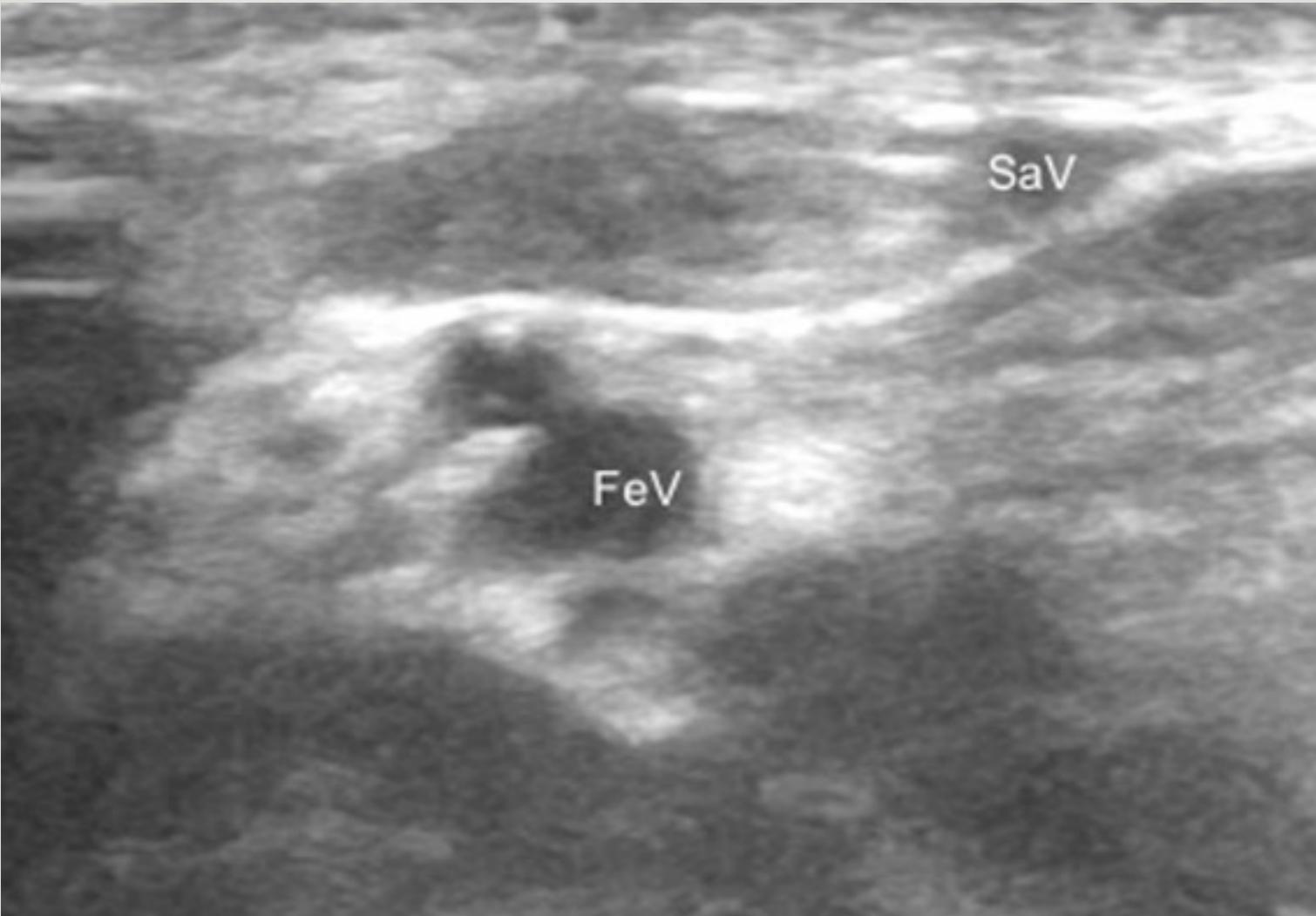
- To optimize the maneuver, assembling all the evidence-based strategies apt to minimize the risk of insertion-related complications
- To facilitate the diffusion of such strategies in all NICUs
- To standardize and facilitate the training

I) CHOICE OF THE SITE OF VENIPUNCTURE BY PRE-PROCEDURAL US EVALUATION (RACEVA/RAFEVA)


- The choice of the vein should not be based on the subjective preference of the operator
- **The site of venipuncture should be chosen after an US scan of the veins** of the supra/infraclavicular region (RaCeVA – Rapid Central Vein Assessment) and of the inguinal-femoral region (RaFeVA – Rapid Femoral Vein Assessment)
- The easiest venipuncture = the safest venipuncture
 - As regards CICCs, the brachiocephalic vein is the easiest to puncture
 - As regards FICCs, the common femoral vein is the easiest to puncture




D4.SD1.S9


There is no ideal site for cannulation in children; the best site should be determined after ultrasound examination


A

RaCeVA - Rapid Central Vein Assessment

SaV

FeV

Neonatology 2019;115:335–340
DOI: 10.1159/000496848

Received: October 20, 2018
Accepted after revision: January 11, 2019
Published online: March 15, 2019

A Systematic Ultrasound Evaluation of the Diameter of Deep Veins in the Newborn: Results and Implications for Clinical Practice

2018

Giovanni Barone^a Vito D'Andrea^a Giovanni Vento^a Mauro Pittiruti^b

^aNeonatal Intensive Care Unit, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy; ^bDepartment of Surgery, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy

Vein	Whole cohort (n = 100)	500–1,000 g (n = 20)	1,001–1,500 g (n = 20)	1,501–2,000 g (n = 20)	2,001–2,500 g (n = 20)	2,501–3,000 g (n = 20)	ICC
R IJV	3.1±0.8 (1.8–6.0)	2.4±0.5 (1.8–3.1)	2.8±0.5 (2.0–3.3)	3.0±0.6 (2.1–4.2)	3.2±0.3 (2.8–3.6)	4.2±0.7 (3.2–6.0)	0.85
L IJV	3.2±0.8 (1.9–7.0)	2.5±0.4 (1.9–3.1)	2.7±0.5 (2.0–3.4)	3.2±0.6 (2.2–4.4)	3.2±0.2 (2.8–3.6)	4.4±0.9 (3.3–7.0)	0.87
R BCV	3.6±0.6 (2.6–5.7)	3.0±0.3 (2.6–3.6)	3.3±0.3 (2.7–3.7)	3.4±0.3 (2.7–3.6)	3.8±0.4 (3.1–4.2)	4.5±0.6 (3.7–5.7)	0.96
L BCV	3.5±0.8 (2.0–7.5)	3.0±0.3 (2.2–3.3)	2.9±0.4 (2.0–3.6)	3.4±0.5 (2.4–4.2)	3.5±0.3 (2.9–4.1)	4.6±0.9 (3.5–6.5)	0.97
R SBV	1.8±0.6 (0.8–3.0)	1.1±0.3 (0.8–1.7)	1.5±0.3 (1.2–2.2)	1.8±0.3 (1.3–2.3)	2.0±0.3 (1.5–2.4)	2.5±0.4 (2.0–3.0)	0.91
L SBV	1.8±0.6 (0.8–3.2)	1.1±0.3 (0.8–1.6)	1.4±0.3 (0.8–1.7)	1.8±0.3 (1.3–2.2)	2.0±0.3 (1.5–2.3)	2.5±0.3 (1.9–3.2)	0.92
R EJV	1.3±0.3 (0.8–2.2)	1.0±0.2 (0.8–1.3)	1.3±0.2 (0.9–1.5)	1.2±0.2 (0.9–1.5)	1.3±0.2 (1.0–1.5)	1.7±0.3 (1.1–2.2)	0.89
L EJV	1.4±0.4 (0.6–2.4)	0.9±0.2 (0.6–1.2)	1.2±0.3 (0.8–1.5)	1.4±0.2 (1.1–1.7)	1.5±0.2 (1.2–1.7)	1.8±0.2 (1.5–2.4)	0.90
R AxVc	1.9±0.5 (1.2–3.5)	1.5±0.1 (1.2–2.0)	1.7±0.4 (1.3–2.3)	1.8±0.3 (1.3–2.2)	2.0±0.3 (1.5–2.3)	2.5±0.5 (1.9–3.5)	0.91
L AxVc	2.0±0.4 (1.3–3.2)	1.6±0.2 (1.3–1.9)	1.9±0.5 (1.3–2.8)	2.0±0.3 (1.4–2.2)	2.2±0.2 (1.9–2.5)	2.5±0.4 (2.0–3.2)	0.93
R AxVa	1.6±0.4 (0.8–2.4)	1.2±0.3 (0.8–1.5)	1.5±0.3 (1.0–1.9)	1.5±0.3 (1.1–2.1)	1.8±0.3 (1.3–2.2)	2.1±0.2 (1.5–2.4)	0.92
L AxVa	1.6±0.4 (0.8–2.6)	1.2±0.2 (0.8–1.7)	1.5±0.4 (1.0–2.1)	1.7±0.3 (1.0–2.1)	1.8±0.2 (1.4–2.1)	2.0±0.3 (1.6–2.6)	0.91
R BrV	1.0±0.3 (0.5–2.1)	0.9±0.2 (0.7–1.2)	0.8±0.2 (0.5–1.0)	0.8±0.2 (0.6–1.1)	1.1±0.1 (0.9–1.3)	1.5±0.2 (1.2–2.1)	0.89
L BrV	1.1±0.4 (0.6–1.9)	0.9±0.2 (0.7–1.3)	0.8±0.2 (0.6–1.0)	1.0±0.2 (0.7–1.3)	1.2±0.1 (1.0–1.4)	1.6±0.2 (1.3–1.9)	0.90
R BaV	1.0±0.3 (0.5–1.5)	0.7±0.2 (0.5–1.1)	1.0±0.2 (0.7–1.2)	0.9±0.2 (0.6–1.2)	1.2±0.2 (0.7–1.4)	1.3±0.1 (1.1–1.5)	0.91
L BaV	1.0±0.3 (0.5–1.5)	0.7±0.1 (0.5–1.0)	0.9±0.1 (0.7–1.1)	0.9±0.1 (0.6–1.1)	1.3±0.2 (0.8–1.5)	1.3±0.1 (1.1–1.5)	0.92
R FeV	2.3±0.7 (1.1–3.5)	1.4±0.2 (1.1–1.8)	2.1±0.4 (1.3–2.7)	2.2±0.3 (1.8–2.6)	2.8±0.4 (2.1–3.4)	3.2±0.2 (2.9–3.5)	0.89
L FeV	2.3±0.7 (1.1–3.5)	1.4±0.3 (1.1–1.9)	2.1±0.5 (1.6–2.9)	2.0±0.4 (1.4–2.6)	2.9±0.2 (2.5–3.3)	3.1±0.2 (2.9–3.5)	0.91
R SaV	1.3±0.5 (0.5–2.3)	0.8±0.2 (0.5–1.2)	1.0±0.3 (0.7–1.8)	1.3±0.2 (0.9–1.5)	1.7±0.4 (1.2–2.3)	1.8±0.3 (1.3–2.3)	0.88
L SaV	1.3±0.5 (0.4–2.3)	0.8±0.2 (0.4–1.1)	1.1±0.2 (0.7–1.5)	1.2±0.2 (0.8–1.4)	1.8±0.3 (1.4–2.3)	1.8±0.3 (1.4–2.3)	0.89

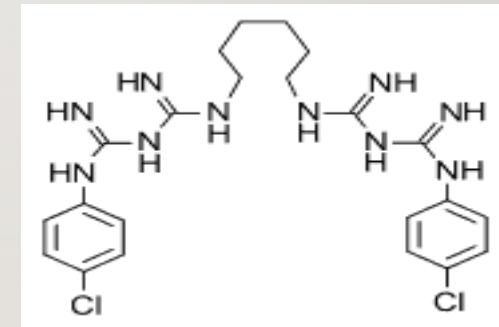
Vein	Whole cohort (n = 100)	500–1,000 g (n = 20)	1,001–1,500 g (n = 20)	1,501–2,000 g (n = 20)	2,001–2,500 g (n = 20)	2,501–3,000 g (n = 20)	ICC
R IJV	3.1±0.8 (1.8–6.0)	2.4±0.5 (1.8–3.1)	2.8±0.5 (2.0–3.3)	3.0±0.6 (2.1–4.2)	3.2±0.3 (2.8–3.6)	4.2±0.7 (3.2–6.0)	0.85
L IJV	3.2±0.8 (1.9–7.0)	2.5±0.4 (1.9–3.1)	2.7±0.5 (2.0–3.4)	3.2±0.6 (2.2–4.4)	3.2±0.2 (2.8–3.6)	4.4±0.9 (3.3–7.0)	0.87
R BCV	3.6±0.6 (2.6–5.7)	3.0±0.3 (2.6–3.6)	3.3±0.3 (2.7–3.7)	3.4±0.3 (2.7–3.6)	3.8±0.4 (3.1–4.2)	4.5±0.6 (3.7–5.7)	0.96
L BCV	3.5±0.8 (2.0–7.5)	3.0±0.3 (2.2–3.3)	2.9±0.4 (2.0–3.6)	3.4±0.5 (2.4–4.2)	3.5±0.3 (2.9–4.1)	4.6±0.9 (3.5–6.5)	0.97
R SBV	1.8±0.6 (0.8–3.0)	1.1±0.3 (0.8–1.7)	1.5±0.3 (1.2–2.2)	1.8±0.3 (1.3–2.3)	2.0±0.3 (1.5–2.4)	2.5±0.4 (2.0–3.0)	0.91
L SBV	1.8±0.6 (0.8–3.2)	1.1±0.3 (0.8–1.6)	1.4±0.3 (0.8–1.7)	1.8±0.3 (1.3–2.2)	2.0±0.3 (1.5–2.3)	2.5±0.3 (1.9–3.2)	0.92
R EJV	1.3±0.3 (0.8–2.2)	1.0±0.2 (0.8–1.3)	1.3±0.2 (0.9–1.5)	1.2±0.2 (0.9–1.5)	1.3±0.2 (1.0–1.5)	1.7±0.3 (1.1–2.2)	0.89
L EJV	1.4±0.4 (0.6–2.4)	0.9±0.2 (0.6–1.2)	1.2±0.3 (0.8–1.5)	1.4±0.2 (1.1–1.7)	1.5±0.2 (1.2–1.7)	1.8±0.2 (1.5–2.4)	0.90
R AxVc	1.9±0.5 (1.2–3.5)	1.5±0.1 (1.2–2.0)	1.7±0.4 (1.3–2.3)	1.8±0.3 (1.3–2.2)	2.0±0.3 (1.5–2.3)	2.5±0.5 (1.9–3.5)	0.91
L AxVc	2.0±0.4 (1.3–3.2)	1.6±0.2 (1.3–1.9)	1.9±0.5 (1.3–2.8)	2.0±0.3 (1.4–2.2)	2.2±0.2 (1.9–2.5)	2.5±0.4 (2.0–3.2)	0.93
R AxVa	1.6±0.4 (0.8–2.4)	1.2±0.3 (0.8–1.5)	1.5±0.3 (1.0–1.9)	1.5±0.3 (1.1–2.1)	1.8±0.3 (1.3–2.2)	2.1±0.2 (1.5–2.4)	0.92
L AxVa	1.6±0.4 (0.8–2.6)	1.2±0.2 (0.8–1.7)	1.5±0.4 (1.0–2.1)	1.7±0.3 (1.0–2.1)	1.8±0.2 (1.4–2.1)	2.0±0.3 (1.6–2.6)	0.91
R BrV	1.0±0.3 (0.5–2.1)	0.9±0.2 (0.7–1.2)	0.8±0.2 (0.5–1.0)	0.8±0.2 (0.6–1.1)	1.1±0.1 (0.9–1.3)	1.5±0.2 (1.2–2.1)	0.89
L BrV	1.1±0.4 (0.6–1.9)	0.9±0.2 (0.7–1.3)	0.8±0.2 (0.6–1.0)	1.0±0.2 (0.7–1.3)	1.2±0.1 (1.0–1.4)	1.6±0.2 (1.3–1.9)	0.90
R BaV	1.0±0.3 (0.5–1.5)	0.7±0.2 (0.5–1.1)	1.0±0.2 (0.7–1.2)	0.9±0.2 (0.6–1.2)	1.2±0.2 (0.7–1.4)	1.3±0.1 (1.1–1.5)	0.91
L BaV	1.0±0.3 (0.5–1.5)	0.7±0.1 (0.5–1.0)	0.9±0.1 (0.7–1.1)	0.9±0.1 (0.6–1.1)	1.3±0.2 (0.8–1.5)	1.3±0.1 (1.1–1.5)	0.92
R FeV	2.3±0.7 (1.1–3.5)	1.4±0.2 (1.1–1.8)	2.1±0.4 (1.3–2.7)	2.2±0.3 (1.8–2.6)	2.8±0.4 (2.1–3.4)	3.2±0.2 (2.9–3.5)	0.89
L FeV	2.3±0.7 (1.1–3.5)	1.4±0.3 (1.1–1.9)	2.1±0.5 (1.6–2.9)	2.0±0.4 (1.4–2.6)	2.9±0.2 (2.5–3.3)	3.1±0.2 (2.9–3.5)	0.91
R SaV	1.3±0.5 (0.5–2.3)	0.8±0.2 (0.5–1.2)	1.0±0.3 (0.7–1.8)	1.3±0.2 (0.9–1.5)	1.7±0.4 (1.2–2.3)	1.8±0.3 (1.5–2.3)	0.88
L SaV	1.3±0.5 (0.4–2.3)	0.8±0.2 (0.4–1.1)	1.1±0.2 (0.7–1.5)	1.2±0.2 (0.8–1.4)	1.8±0.3 (1.4–2.3)	1.8±0.3 (1.4–2.3)	0.89

2) APPROPRIATE ASEPSIS (HAND HYGIENE + 2% CHG IN 70% IPA + MBP)

- 1. Hand hygiene**
- 2. Skin antisepsis with 2% chlorhexidine in 70% IPA**

Using one-dose disposable applicators with known quantity of antiseptic

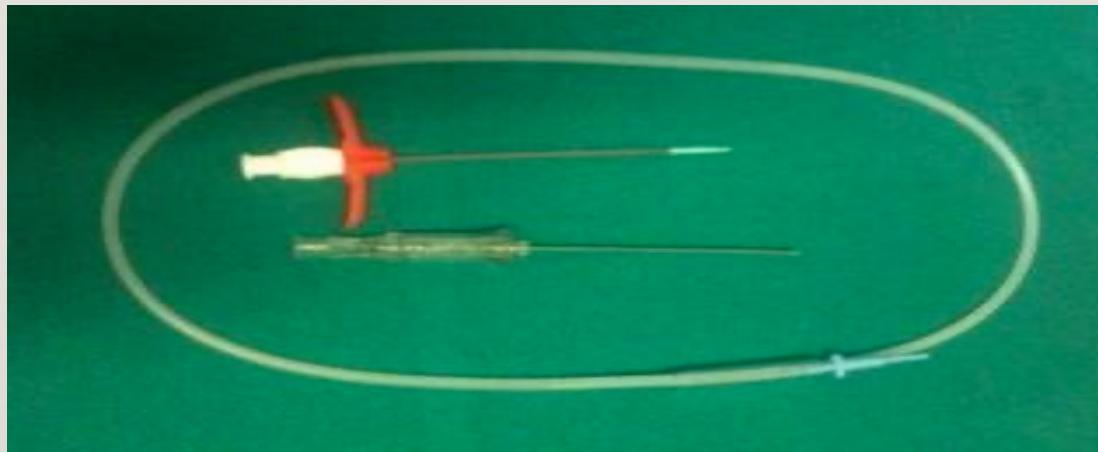
- 3. Maximal barrier precautions (berret, mask, sterile gloves, sterile gown, wide sterile field, proper sterile cover of the US probe)**


HAND HYGIENE

MBP

2% CHG IN 70% IPA

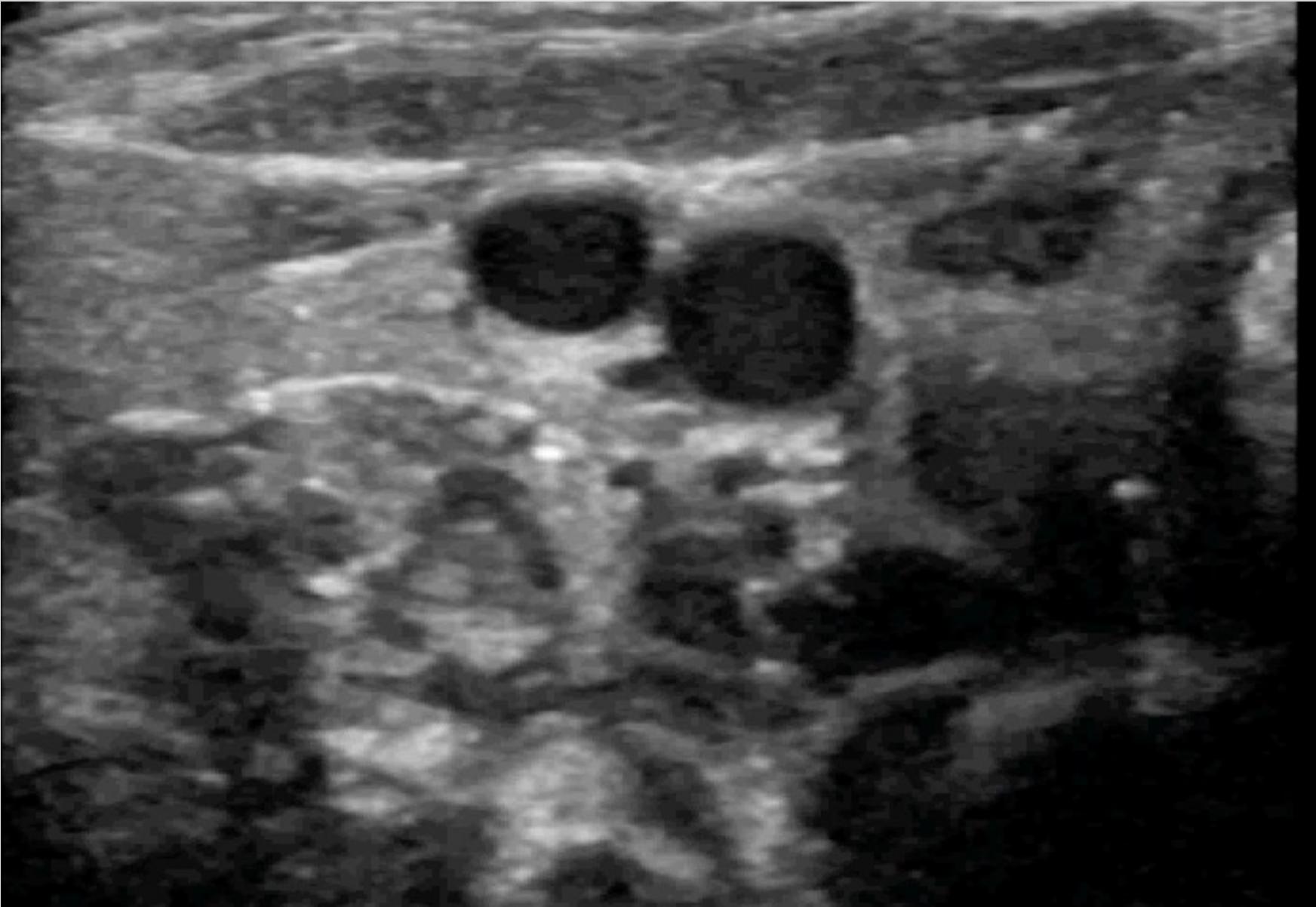
3) US-GUIDED VENIPUNCTURE + US CONTROL AFTER VENIPUNCTURE (R/O PNX + TIP NAVIGATION)



- US-guided venipuncture adopting micro-introducer kits (21G needle + 0.018" nitinol floppy straight tip guidewire + micro-introducer-dilator)
- For CICCs, always use an in-plane approach
- After the venipuncture, with the same linear probe:
 - Check the persistence of the pleural sliding (= no PNX)
 - Check the correct direction of the guidewire (tip navigation)

Kits for micro-introduction :

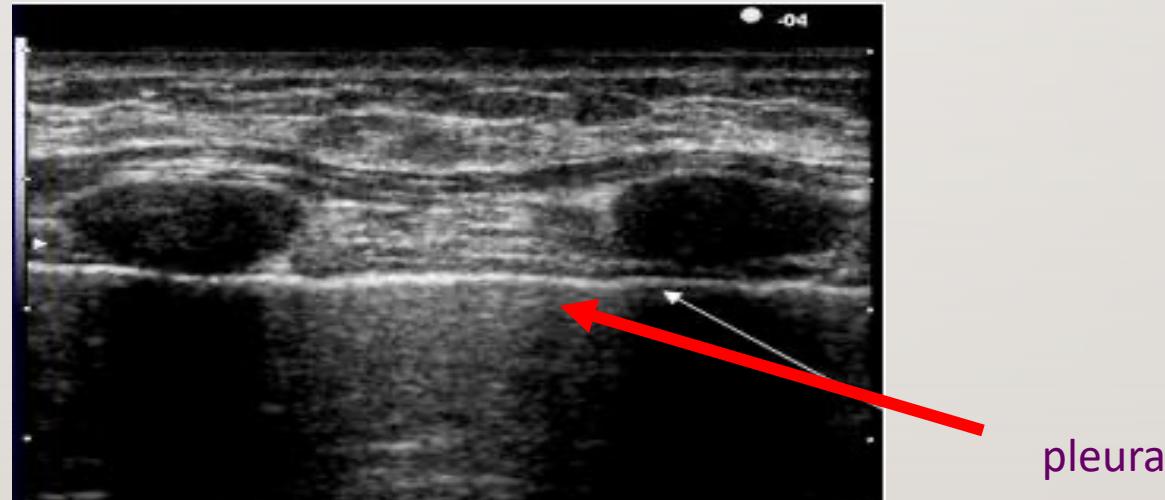
- 21 G echogenic needles
- soft straight tip 0.018" guide-wire
- 3,5 or 4,5 Fr micro-introducer-dilator



Needle

Tip navigation

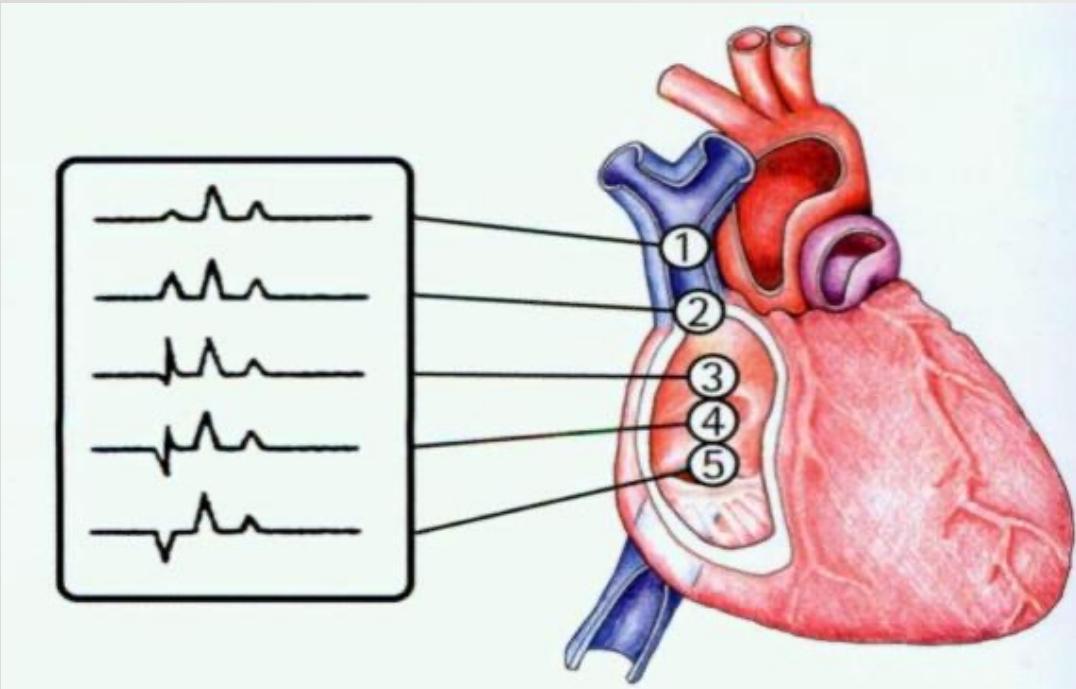
Ultrasound is constantly used to assess the direction of the guidewire, soon after its insertion in the needle

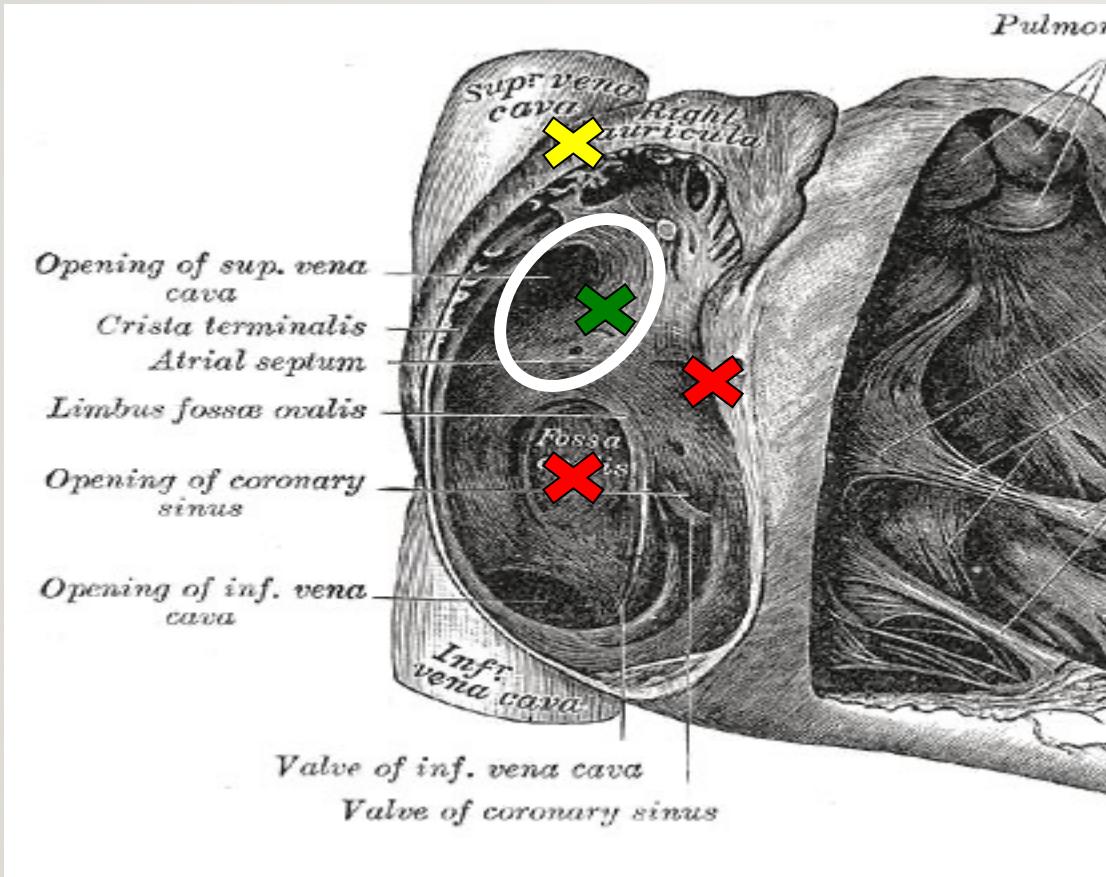


Wrong direction !

Tip navigation 2

After the puncture, the possible presence of pneumothorax or other pleura-pulmonary damage is excluded by ultrasound scan of the intercostal spaces.


4) INTRA PROCEDURAL TIP LOCATION (IC-ECG AND/OR ECHOTIP)


- Current guidelines (ESA 2020, INS 2024) recommend that **tip location must be intra-procedural**
- The most accurate, simplest, safest, and cheapest intraprocedural methods of tip location are **intracavitory ECG and ECHOTIP**: both have 100% applicability and 100% feasibility for CICCs/FICCs in the neonate
 - The antiquate strategy of 'blind' placement of the central line with post-procedural tip location by x-ray is currently considered senseless.
 - After intra-procedural tip location by IC-ECG and/or ECHOTIP, post-procedural x-ray is currently considered senseless.

IC-ECG METHOD

- Intracavitary ECG (lead II)
- The intracavitary electrode is the tip of the catheter
- Based on changes of P wave during the progression of the catheter into the central veins
- CAVO-ATRIAL JUNCTION: maximal peak of the P wave (Stas, Yeon, Schummer, Pittiruti/La Greca, etc,) (= CRISTA TERMINALIS)

✖ P increasing

✖ Maximal P

✖ P decreasing
and/or diphasic

Neo-ECHOTIP: A structured protocol for ultrasound-based tip navigation and tip location during placement of central venous access devices in neonates

**Giovanni Barone¹ , Mauro Pittiruti² , Daniele G Biasucci³,
Daniele Elisei⁴, Emanuele Iacobone⁴ , Antonio La Greca²,
Geremia Zito Marinosci⁵ and Vito D'Andrea⁶ **

2021

The Journal of Vascular Access
1–10
© The Author(s) 2021
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: [10.1177/11297298211007703](https://doi.org/10.1177/11297298211007703)
journals.sagepub.com/home/jva

Catheter	Protocol	Probe	Windows
UVC	Tip navigation	Small sectorial probe, 7–8 MHz	Low subcostal longitudinal view
ECCs inserted via veins of the scalp or of the upper limbs	Tip location	Small sectorial probe, 7–8 MHz	Subcostal longitudinal view
	Tip navigation	Linear “hockey stick” probe, 10–14 MHz	Acoustic windows of RaCeVA and RaPeVA
ECCs inserted via veins of the lower limbs	Tip location	Small sectorial probe, 7–8 MHz	Bi-caval view; four-chamber apical view; long axis view of SVC
	Tip navigation	Linear “hockey stick” probe, 10–14 MHz	Short and long axis view of the femoral vein
CICC	Tip location	Small sectorial probe, 7–8 MHz	Subcostal longitudinal view
	Tip navigation	Linear “hockey stick” probe, 10–14 MHz	Acoustic windows of RaCeVA
FICC	Tip location	Small sectorial probe, 7–8 MHz	Bi-caval view; four-chamber apical view; long axis view of SVC
	Tip navigation	Linear “hockey stick” probe, 10–14 MHz and small sectorial probe	Short and long axis view of the femoral vein and subcostal longitudinal view
	Tip location	Small sectorial probe, 7–8 MHz	Subcostal longitudinal view

Catheter	Protocol	Probe	Windows
UVC	Tip navigation Tip location	Small sectorial probe, 7–8 MHz Small sectorial probe, 7–8 MHz	Low subcostal longitudinal view Subcostal longitudinal view
ECCs inserted via veins of the scalp or of the upper limbs	Tip navigation Tip location	Linear “hockey stick” probe, 10–14 MHz Small sectorial probe, 7–8 MHz	Acoustic windows of RaCeVA and RaPeVA Bi-caval view; four-chamber apical view; long axis view of SVC
ECCs inserted via veins of the lower limbs	Tip navigation	Linear “hockey stick” probe, 10–14 MHz	Short and long axis view of the femoral vein
CICC	Tip location Tip navigation	Small sectorial probe, 7–8 MHz Linear “hockey stick” probe, 10–14 MHz	Subcostal longitudinal view Acoustic windows of RaCeVA
FICC	Tip location Tip navigation	Small sectorial probe, 7–8 MHz Linear “hockey stick” probe, 10–14 MHz and small sectorial probe	Bi-caval view; four-chamber apical view; long axis view of SVC Short and long axis view of the femoral vein and subcostal longitudinal view
	Tip location	Small sectorial probe, 7–8 MHz	Subcostal longitudinal view

6.0cm

2D

67%

C 50

P Off

AGen

PLAX

G
P A R
3.0 6.0

- 6 M4

X2 5

- 4

- 3

- 2

- 1

15

P

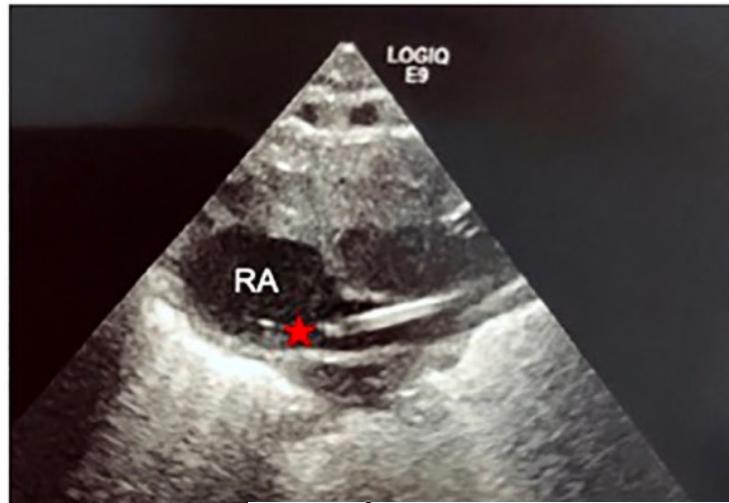
2D
80%
C 50
P Off
AGen

G
P R
3.0 6.0

X2 5

5

- 1
- 2
- 3
- 4



The intracavitory ECG method for tip location of ultrasound-guided centrally inserted central catheter in neonates

The Journal of Vascular Access
1–6
© The Author(s) 2022
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: [10.1177/11297298211068302](https://doi.org/10.1177/11297298211068302)
journals.sagepub.com/home/jva

**Vito D'Andrea¹ , Lucilla Pezza¹, Giorgia Prontera¹,
Gina Ancora², Mauro Pittiruti³ , Giovanni Vento¹
and Giovanni Barone² **

2022

The applicability of IC-ECG was 100%, since a P wave was evident on the surface ECG of all neonates recruited for the study.

The feasibility of IC-ECG was also 100%, since a peak of the P wave was identified during all procedures.

The match between IC-ECG based tip location and ultrasound-based tip location was optimal, since all catheters were properly located at the CAJ as judged by ultrasound. All catheter tips were identified at ultrasound tip location, using one or more of the windows as described above.

A narrative review on tip navigation and tip location of central venous access devices in the neonate: Intracavitory ECG or real time ultrasound?

Miria Natile¹, Gina Ancora¹, Vito D'Andrea²

Mauro Pittiruti³ and Giovanni Barone¹

The Journal of Vascular Access
1–8
© The Author(s) 2024
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/11297298241259247
journals.sagepub.com/home/jva

Table 1. Tip location by intracavitory ECG.

Vascular Access Device	Applicability	Feasibility	Accuracy
UVC	Applicable, but not recommended	Yes	Low
ECC – upper limbs	Applicable, but not recommended	Not always feasible	High
ECC – lower limbs	Not always applicable	Not always feasible	Low
CICC	Applicable and highly recommended	Yes	High
FICC	Not always applicable	Not always feasible	Low

IC-ECG = never applicable for tip navigation.

Table 2. Tip location by real time ultrasound.

Vascular Access Device	Applicability	Feasibility	Accuracy
UVC	Applicable, highly recommended	Yes	High
ECC – upper limbs	Applicable, recommended	Yes	High
ECC – lower limbs	Applicable, recommended	Yes	High
CICC	Applicable	Yes	High
FICC	Applicable, recommended	Yes	High

5) TUNNELING

- Tunneling (a) minimizes bacterial contamination via the extra-luminal route, (b) allows to choose an exit site in an ‘ideal’ location
- **Tunneling CICCs/FICCs in the neonate is easy, rapid and safe**
 - The catheters must be inserted using the modified Seldinger technique.
 - As regards CICCs, the catheter is usually tunneled to the infraclavicular area (but other tunneling - chest-to-arm or chest-to-back – are possible).
 - As regards FICCs, the catheter is usually tunneled to mid-thigh.

Rapid Assessment of Vascular Exit Site and Tunneling Options (RAVESTO): A new decision tool in the management of the complex vascular access patients

Matthew D Ostroff¹ , Nancy Moureau² and Mauro Pittiruti³

CICC (supraclavicular
puncture)

Tunnel to infraclavicular
area

Tunnel to arm

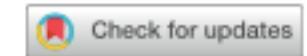
Tunnel to back

Long term intravenous treatment in non-hospitalized patients (antibiotics, parenteral nutrition, chemotherapy); expected difficulties in management of the exit site in hospitalized patients (beard, humidity, tracheostomy, instability, etc.)

Compromised skin integrity of the chest area; oral or endotracheal secretions over chest; implanted device on ipsilateral chest; chest surgery; contracted shoulder; etc.

Cognitive disorder resulting in device removal; contraindication to chest or arm exit site

6) SECUREMENT BY SUBCUTANEOUS ANCHORAGE


- Subcutaneous anchorage (Securacath) is the most reliable securement, and it can be adopted for all neonatal CICCs/FICCs of 3-4-5Fr.
- **Subcutaneous anchorage – if appropriately placed – nullifies the risk of dislodgment**

Clinical experience of a subcutaneously anchored sutureless system for securing central venous catheters

Mauro Pittiruti, Giancarlo Scoppettuolo, Laura Dolcetti, Davide Celentano, Alessandro Emoli, Bruno Marche and Andrea Musarò

SHORT REPORT

Securement of central venous catheters by subcutaneously anchored suturless devices in neonates

Vito D'Andrea^a , Giovanni Barone^b, Lucilla Pezza^a, Giorgia Prontera^a, Giovanni Vento^a and Mauro Pittiruti^c

^aDepartment of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy;

^bNeonatal Intensive Care Unit, Azienda Sanitaria Romagna, Infermi Hospital Rimini, Rimini, Italy; ^cDepartment of Surgery, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy

7) PROTECTION OF THE EXIT SITE WITH CYANOACRYLATE GLUE AND SEMIPERMEABLE TRANSPARENT MEMBRANE

Protection implies two strategies

- **CYANOACRYLATE GLUE**

- butyl-cyanoacrylate or octyl-butyl-cyanoacrylate
- minimal quantities should be used (0.15-0.25 ml)
- the glue seals the exit site but also the puncture site

- **SEMIPERMEABLE TRANSPARENT MEMBRANES**

- in neonates, use membraned with MVTR > 1500 g/m²/day

The antiquate strategy of covering the exit site with gauze and tape is currently regarded as unreasonable, and should be abandoned.

Ten years of clinical experience with cyanoacrylate glue for venous access in a 1300-bed university hospital

BJN 2022

Mauro Pittiruti, Maria Giuseppina Annetta, Bruno Marche, Vito D'Andrea and Giancarlo Scoppettuolo

Comparing test methods for moisture-vapor transmission rate (MVTR) for vascular access transparent semipermeable dressings

Paul Bainbridge¹, Paul Browning², Stéphanie F Bernatchez³ ,
Casey Blaser³ and Guido Hitschmann¹

The Journal of Vascular Access

1–8

© The Author(s) 2021

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: [10.1177/11297298211050485](https://doi.org/10.1177/11297298211050485)

journals.sagepub.com/home/jva

Dressing	MVTR liquid (inverted method)	MVTR vapor (upright method)
A	4089	1682
B	845	773
C	1225	1079
D	1047	976
E	1031	936
F ^b	30,530	2838
G	5164	1644

Dressing	MVTR liquid (inverted method)	MVTR vapor (upright method)
A Tegaderm Advanced	4089	1682
B	845	773
C	1225	1079
D	1047	976
E	1031	936
F ^b IV 3000	30,530	2838
G SorbaView	5164	1644

THE CONSISTENT APPLICATION OF THIS BUNDLE
IS ASSOCIATED WITH OPTIMAL CLINICAL RESULTS

THE CONSISTENT APPLICATION OF THIS BUNDLE IS ASSOCIATED WITH ZERO IMMEDIATE COMPLICATIONS

Original research article

Centrally inserted central catheters in preterm neonates with weight below 1500 g by ultrasound-guided access to the brachio-cephalic vein

**Giovanni Barone¹ , Mauro Pittiruti² , Gina Ancora¹,
Giovanni Vento³, Francesca Tota⁴ and Vito D'Andrea³ **

JVA | The Journal of
Vascular Access

The Journal of Vascular Access
1–9
© The Author(s) 2020
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1129729820940174
[journals.sagepub.com/home/jva](http://jva.sagepub.com/home/jva)

2020

30 insertions
100% success
No arterial puncture
No pneumothorax

THE CONSISTENT APPLICATION OF THIS BUNDLE IS ASSOCIATED WITH **ZERO IMMEDIATE COMPLICATIONS**

Original research article

Ultrasound-guided cannulation of the brachiocephalic vein in newborns: A novel approach with a supraclavicular view for tip navigation and tip location

Ferdinando Spagnuolo and Teresa Vacchiano

The Journal of Vascular Access
1–9
© The Author(s) 2021
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/11297298211001159
journals.sagepub.com/home/jva

2021

40 insertions
100% success
No arterial puncture
No pneumothorax

THE CONSISTENT APPLICATION OF THIS BUNDLE IS ASSOCIATED WITH ZERO IMMEDIATE COMPLICATIONS

THE JOURNAL OF MATERNAL-FETAL & NEONATAL MEDICINE
<https://doi.org/10.1080/14767058.2021.1922377>

Taylor & Francis
Taylor & Francis Group

SHORT REPORT

Securement of central venous catheters by subcutaneously anchored suturless devices in neonates

Vito D'Andrea^a ID, Giovanni Barone^b, Lucilla Pezza^a, Giorgia Prontera^a, Giovanni Vento^a and Mauro Pittiruti^c

^aDepartment of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy;

^bNeonatal Intensive Care Unit, Azienda Sanitaria Romagna, Infermi Hospital Rimini, Rimini, Italy; ^cDepartment of Surgery, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy

2021

72 insertions
100% success
No arterial puncture
No pneumothorax

THE CONSISTENT APPLICATION OF THIS BUNDLE IS ASSOCIATED WITH ZERO IMMEDIATE COMPLICATIONS

Clinical trial protocol

A GAVeCeLT bundle for central venous catheterization in neonates and children: A prospective clinical study on 729 cases

Mauro Pittiruti¹ , Davide Celentano², Giovanni Barone³ ,
Vito D'Andrea⁴ , Maria Giuseppina Annetta⁵ and Giorgio Conti²

JVA | The Journal of
Vascular Access

The Journal of Vascular Access
1–12
© The Author(s) 2022
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: [10.1177/11297298221074472](https://doi.org/10.1177/11297298221074472)

2022

68 insertions
100% success
No arterial puncture
No pneumothorax

THE CONSISTENT APPLICATION OF THIS BUNDLE IS ASSOCIATED WITH ZERO IMMEDIATE COMPLICATIONS

Original research article

The intracavitory ECG method for tip location of ultrasound-guided centrally inserted central catheter in neonates

Vito D'Andrea¹ , Lucilla Pezza¹, Giorgia Prontera¹,
Gina Ancora², Mauro Pittiruti³ , Giovanni Vento¹
and Giovanni Barone²

JVA
The Journal of
Vascular Access

The Journal of Vascular Access
1–6
© The Author(s) 2022
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/11297298211068302
journals.sagepub.com/home/jva

2022

105 insertions
100% success
No arterial puncture
No pneumothorax

THE CONSISTENT APPLICATION OF THIS BUNDLE IS ASSOCIATED WITH **ZERO LATE COMPLICATIONS**

- *Follow up at two weeks (68 neonates - Pittiruti, JVA 2022) and at three months (30 neonates - Barone, JVA 2020):*

no catheter-related bloodstream infection

no catheter-related thrombosis

no dislodgment

no lumen occlusion

WHICH NEONATES SHOULD BENEFIT OF AN US-GUIDED CICC OR FICC?

- Critically ill neonates
- Neonates candidate to long term venous access (> 2 weeks)

See the recommendations of the DAV-Expert

Which neonates should benefit of an US-guided CICC or FICC?

Original research article

Centrally inserted central catheters in preterm neonates with weight below 1500 g by ultrasound-guided access to the brachio-cephalic vein

Giovanni Barone¹ , Mauro Pittiruti² , Gina Ancora¹,
Giovanni Vento³, Francesca Tota⁴ and Vito D'Andrea³

Table 4. Differences between epicutaneo-caval catheters (ECCs) and central inserted central catheters (CICCs).

	CICC	ECC
Venipuncture	Deep veins	Superficial veins
Ultrasound guidance	Yes	No
Catheter diameter	3–4 Fr	1–2.7 Fr
Sedation required	Yes	No
Power injectability	Yes	No
Maximal flow rate	60 mL/min	1 mL/min
Infusion of blood products	Yes	No
Monitoring of central venous pressure	Yes	No
Monitoring of SvO_2	Yes	No
Blood sampling	Yes	No
Tunneling	Yes	No
Tip location by intracavitory ECG	Yes	Yes
Limited dwell time	No	Yes
Possibility of CRBSI diagnosis by DTP	Yes	No

The neonatal DAV-expert algorithm: a GAVeCeLT/GAVePed consensus for the choice of the most appropriate venous access in newborns

Giovanni Barone¹ · Vito D'Andrea² · Gina Ancora¹ · Francesco Cresi³ · Luca Maggio⁴ · Antonella Capasso⁵ · Rossella Mastroianni⁶ · Nicola Pozzi⁷ · Carmen Rodriguez-Perez⁸ · Maria Grazia Romitti⁹ · Francesca Tota¹⁰ · Ferdinando Spagnuolo¹¹ · Francesco Raimondi⁵ · Mauro Pittiruti¹²

2023

Received: 13 February 2023 / Revised: 11 April 2023 / Accepted: 15 April 2023

© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

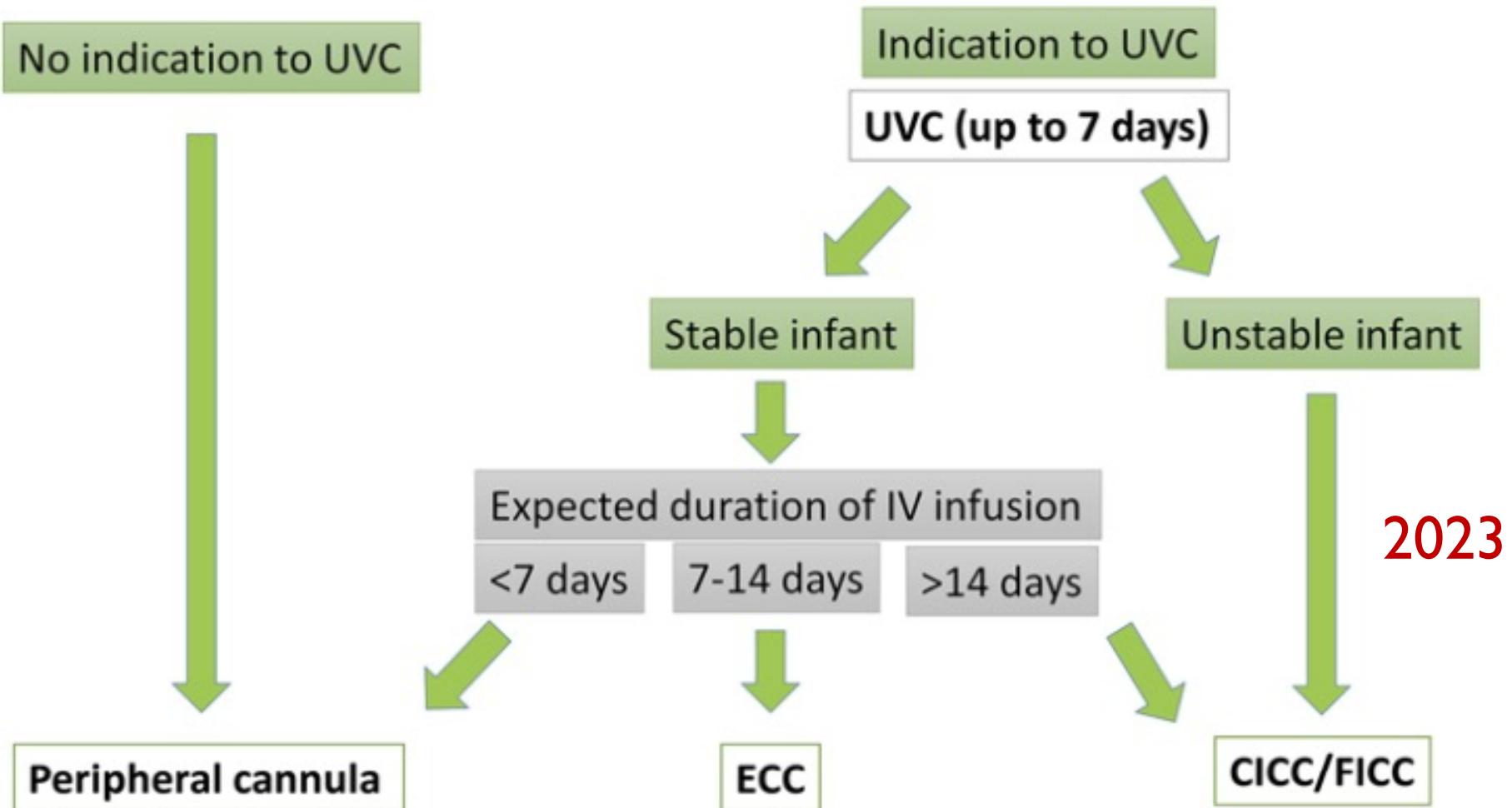
Appropriate indications for the use of centrally inserted central catheters (CICC) and femorally inserted central catheters (FICC)

Panel recommendations.

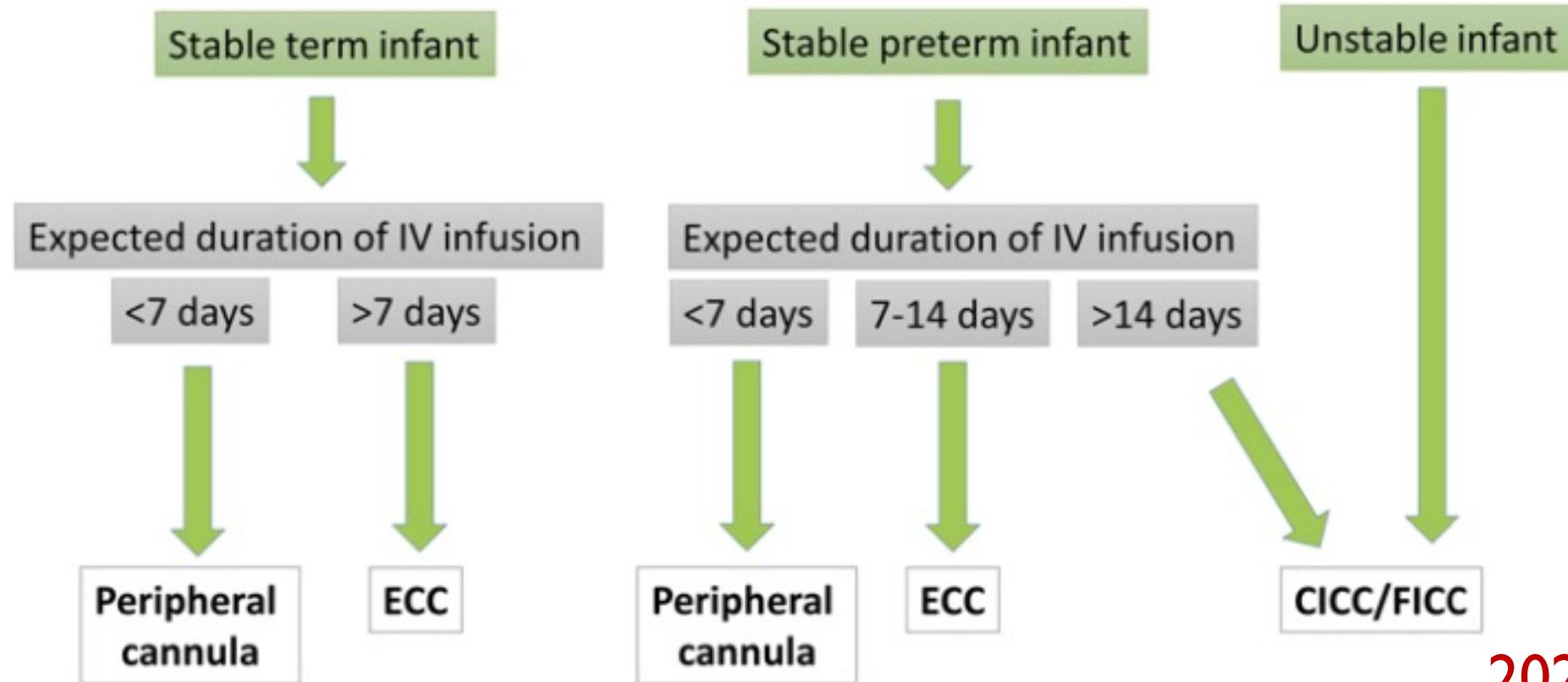
1. Indications for ultrasound-guided CICCs or FICCs include the following: (a) newborns (at any gestational age) with hemodynamic instability developed after the first 24 h of life, or even within the first 24 h of life, if UVC insertion is not feasible or if the UVC cannot be placed in a proper position; (b) newborns who need or might need rapid fluid repletion (in emergency and/or before major surgery); (c) newborns with major malformation pathologies requiring surgery (e.g., major exomphalos; esophageal atresia); (d) stable newborns

requiring a central line, if ECC cannot be placed in a proper position; (e) newborns requiring repeated blood samplings; (f) newborns requiring multiple transfusions; (g) CICCs or FICCs should also be considered in stable preterm newborns with an expected duration of PN longer than 2 weeks.

2. Ultrasound-guided CICCs and FICCs should be preferably power injectable and made of polyurethane. Calibers between 3 and 4Fr are usually appropriate, depending on the size of the vein being cannulated.
3. Consider the benefit of tunneling all ultrasound-guided CICC/FICC, especially in elective conditions.


Appropriate indications for the use of centrally inserted central catheters (CICC) and femorally inserted central catheters (FICC)

Special considerations.


- Even though it is always advisable to tunnel the catheter, in some situations, this maneuver can be impractical, for example, because of the limited duration of sedation in extremely low birth weight infants, or because of the difficulty of using the modified Seldinger technique in babies weighing less than 750 g, or because of insufficient training of the operator.
- Neonates, especially preterm ones, might need repeated peripheral venous cannulations sometimes this leads to a progressive exhaustion of available veins. In this context, an ultrasound-guided CICC or FICC might be considered even though a central line is not strictly indicated.

Need of venous access at birth

Need of venous access after the first day of life

2023

ULTRASOUND GUIDED CENTRAL CATHETERS (CICCS AND FICCS) IN NEONATES TODAY: **ADOPT SICA-PED BUNDLE!**

1. Choice of the site of venipuncture by pre-procedural US evaluation (RaCeVA/RaFeVA)
2. Appropriate asepsis (hand hygiene + 2% CHG in 70% IPA + MPB)
3. US-guided venipuncture + US control after venipuncture (r/o PNX; tip navigation)
4. Intra procedural tip location (IC-ECG and/or ECHOTIP)
5. Tunneling
6. Securement by subcutaneous anchorage
7. Protection of the exit site with cyanoacrylate glue and semipermeable transparent membrane

gbarone85@gmail.com